Flow diverters are widely extended in clinical practice for intracraneal aneurysms treatment. They are formed by a dense mesh of braided wires that partially occludes the aneurysm neck and restores the blood flow into the parent vessel. The occlusion degree is highly dependant on the distribution of the wires under the aneurysm, which is affected by the vessel geometry. Nowadays, there are no clinical indicators of the covering ratio once the flow diverter is deployed.
An important issue in the deployment of braided stents, such as flow diverters, is the change in length, also known as foreshortening, underwent by the device when is released from the catheter into a blood vessel. The position of the distal end is controlled by the interventionist, but knowing a priori the position of the proximal end of the device is not trivial.
Intra-saccular devices (ID) are novel braided devices used for complex intracranial aneurysms treatment. Treatment success is associated with correct device size selection. A technique that predicts the ID size within the aneurysm before intervention will provide a powerful computational tool to aid the interventionist during device selection.
Flow-Diverter (FD) porosity has been pointed as a critical factor in the occlusion of cerebral aneurysms after treatment. Objective: Verification and Validation of computational models in terms of predictive capacity, relating FD porosity and occlusion after cerebral aneurysms treatment.
Intra-saccular devices (ID), developed for the treatment of bifurcation aneurysms, offer new alternatives for treating complex terminal and bifurcation aneurysms. In this work, a complete workflow going from medical images to post-treatment CFD analysis is described and used in the assessment of a concrete clinical problem.
Validate the use of a software-based simulation for pre-assessment of braided self-expanding stents in the treatment of wide-necked intracranial aneurysms
Sizing of flow diverters (FDs) stent in the treatment of intracranial aneurysms is a challenging task due to the change of stent length after implantation
Flow diverter (FD) devices show severe shortening during deployment in dependency of the vessel geometry. Valid information regarding the geometry of the targeted vessel is therefore mandatory for correct device selection, and to avoid complications. But the geometry of diseased tortuous intracranial vessels cannot be measured accurately with standard methods. The goal of this study is to prove the accuracy of a novel virtual stenting method in prediction of the behavior of a FD in an individual vessel geometry.
Intrasaccular devices, like Woven EndoBridge (WEB), are novel braided devices employed for the treatment of aneurysms with a complex shape and location, mostly terminal aneurysms. Such aneurysms are often challenging or impossible to treat with other endovascular techniques such as coils, stents, flow diverter stents.
Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF).
We are here to guide and help you find the solution that is the best fit for your unique needs. Fill in the form to connect with us and a suitable solution expert will get back to you as soon as possible
Rambla Catalunya 53, 4-H, 08007, Barcelona, Spain.
Disclaimer & Regulatory Information
Ankyras is manufactured by Galgo Medical S.L.
Ankyras must be used by trained medical professionals or technicians who are qualified to perform clinical analyses.